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A B S T R A C T

Pedestrian volume is an important indicator of urban walkability and vitality. Hence, information on pedestrian
volumes of different streets is indispensable for creating healthy, pedestrian-oriented cities. Pedestrian volume
data have traditionally been collected through field observations, which has many methodological limitations,
e.g. time-consuming, labor-intensive, and inefficient.

Assessing pedestrian volume automatically from Street View images (SVIs) with machine learning techniques
can overcome such limitations because this approach offers a wide geographic reach and consistent image ac-
quisition. Nevertheless, this new method has not been rigorously validated, and its accuracy remains unclear.

In this study, we conducted a large-scale validation test by comparing pedestrian volume extracted from SVIs
with the results from field observations for more than 700 street segments in Tianjin, China. A total of 4507
sampling points along these street segments were used to collect SVIs.

The results demonstrated that using SVIs with machine learning techniques is a promising method for esti-
mating pedestrian volumes with a large geographic reach. Automated pedestrian volume detection could achieve
reasonable (Cronbach's alpha ≥0.70) or good (Cronbach's alpha ≥0.80) levels of accuracy. It is worth noting
that various factors of SVIs and street segments may affect the accuracy. SVIs with higher image quality, larger
image size, and collection times closer to the targeted periods produced more accurate results. The automated
method also worked better in areas with high pedestrian volume and high street connectivity.

1. Introduction

Recent developments in urban big data and machine learning have
provided us new data sources and an interdisciplinary approach to
understand urban phenomena (Ruppert, 2013). For instance, in the
past, information on perceived of built environment characteristics
(e.g., urban greenery and aesthetics) or residents' travel behavior (e.g.,
walking, cycling) were often manually collected through surveys or
field observations. Recent urban big data have provided effective means
to collect such environmental and behavioral data on a large geo-
graphical scale. Hence, urban big data can advance urban studies,
especially in the areas of walkability and healthy cities (Rzotkiewicz,
Pearson, Dougherty, Shortridge, & Wilson, 2018).

Rapid global urbanization over recent decades has led to a funda-
mental change in people's lifestyle and a rapid expansion of urban
populations. The United Nations estimates that nearly 70% of the
world's population will live in cities by 2050 (United Nations, 2018).
Moreover, urban residents have experienced rapid declines in physical
activity levels, with roughly one-third of urban adults in the world
being physically inactive (Hallal et al., 2012). Compelling evidence
demonstrates that regular physical activity, such as walking and cy-
cling, has an array of health benefits, including the reduced risk of
obesity and chronic illness, and improved physiological and psycholo-
gical health (I.-M. Lee et al., 2012; Sallis, Floyd, Rodriguez, & Saelens,
2012; Wang et al., 2019).

As the most common form of physical activity, walking can be easily
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incorporated into daily life, and it has additional environmental and
social benefits, such as reducing private vehicle use, mitigating traffic
congestion and air pollution, and encouraging social interaction (Giles-
Corti et al., 2013; Lu, Xiao, & Ye, 2017; Nazelle et al., 2011; Yin, 2017).
Many seminal urban planning theories aims to facilitate walking and
pedestrian activities, by well-designed city image (Lynch, 1960), streets
(Jacobs, 1961), and public open spaces (Whyte, 1980). Recent planning
theories, such as smart growth and neourbanism, explicitly aim to
promote walking and active living through various design strategies,
such as mixed land use, compact development, well-connected streets,
and the provision of pedestrian destinations (Durand, Andalib, Dunton,
Wolch, & Pentz, 2011; Giles-Corti et al., 2013).

To provide sustained support for researchers and planners who aim
to create walkable and healthy cities, it is necessary to assess pedestrian
volume, and other walking behaviors constantly. Assessing pedestrian
volumes in different streets or areas can help researchers to evaluate
walkability and to discern how built environment characteristics affect
walking behaviors (Ewing & Clemente, 2013). In the past, pedestrian
volume has been typically collected with pedestrian counts on sites.
However, field observation is inherently subject to significant limita-
tions, such as high demand for manpower and cost, and small study
areas. Street View image services from companies such as Google,
Baidu, and Tencent provide high-resolution, geocoded, streetscape
images in many global cities (Rzotkiewicz et al., 2018). Researchers can
use Street View images (SVIs) in conjunction with machine learning
techniques to extract new built environment characteristics and beha-
vioral data (Shapiro, 2017; Ye et al., 2018; Ye, Zeng, Shen, Zhang, & Lu,
2019). For example, this automated approach has been used to assess
levels of social and physical disorder (Badland, Opit, Witten, Kearns, &
Mavoa, 2010; Rundle, Bader, Richards, Neckerman, & Teitler, 2011),
the presence or absence of public facilities (Clarke, Ailshire, Melendez,
Bader, & Morenoff, 2010; Kelly, Wilson, Baker, Miller, & Schootman,
2013; Wilson et al., 2012), and the degrees of urban greenness (Li et al.,
2015; Lu, Sarkar, & Xiao, 2018). Recent research has suggested that
SVIs is a promising and effective alternative for assessing pedestrian
volume (Yin, Cheng, Wang, & Shao, 2015). To our knowledge, the ac-
curacy of this new method has not been rigorously tested yet. There-
fore, it remains unclear whether SVIs and machine learning techniques
can offer a reliable approach to assess pedestrian volume with accep-
table accuracy.

In this study, we conducted a comprehensive validation test by
comparing the automated pedestrian volume extracted from SVIs with
field observation for 701 street segments in Tianjin, China. More im-
portantly, we identified the optimal parameters of SVIs and street fea-
tures to achieve the highest level of agreement with field observation
data. The SVIs parameters we considered included image source, col-
lection time, and image quality. The street features included street
length, pedestrian volume, and street connectivity. Our study con-
tributed to the development of an innovative and efficient method to
collect pedestrian volume data for any location covered by SVIs
worldwide. More importantly, this study can help researchers and
planners to create healthy cities and promote physical activities by
identifying which areas have high or low pedestrian activity, and by
highlighting which built environment characteristics facilitate or hinder
walking in the long run.

2. Literature review

2.1. The importance of walking

The last few decades have witnessed a substantial decline of en-
gagement in physical activity by urban residents, and this decline has
serious effects on the population's health (Koohsari, Badland, & Giles-
Corti, 2013; I.-M. Lee et al., 2012). A global survey indicated that 31%
of the world's urban population fails to meet the recommendation of
150-min moderate to vigorous physical activity per week (Hallal et al.,

2012). Many developing countries such as China and India have un-
dergone rapid urbanization, which has contributed to the decline in
physical activity, and increased the risk of many chronic diseases (Ng,
Howard, Wang, Su, & Zhang, 2014; Ng, Norton, & Popkin, 2009). For
instance, the average physical activity level of urban adults in China fell
by 32% between 1991 and 2006 (Ng et al., 2009). Physical inactivity is
the fourth leading cause of death worldwide, and it exerts substantial
healthcare and financial burdens in many societies (Kohl et al., 2012).
Strong evidence indicates that 6–10% of all deaths from non-commu-
nicable diseases (such as coronary heart disease or type II diabetes) can
be attributed to physical inactivity (I.-M. Lee et al., 2012; Sallis et al.,
2012).

Walking is arguably the most common and pervasive type of phy-
sical activity. Walking requires no special skills or equipment, and it
can be incorporated into the daily routines of urban residents of all ages
(Tudor-Locke, Bittman, Merom, & Bauman, 2005). In addition, walking
has significant environmental and social benefits, such as reducing
congestion and greenhouse gas emissions and improving social cohe-
sion and urban livability (Yin, 2017). Many researchers and public
health officials have taken a keen interest in building walkable com-
munities and promoting walking behavior. New urban land use and
transport planning policies have increasingly aimed to increase walking
and mitigate dependency on automobiles (Babb & Curtis, 2015). Pro-
moting walking underpins the many urban planning theories, which
link increased rates of walking to the general vitality of urban life
(Southworth, 2005). Jane Jacobs deemed walking, at both the district
and street levels, as an essential source of urban vitality (Jacobs, 1961)
and urged that streets should be used throughout the day, by various
people and for various activities (Jacobs, 1961). Her theory influenced
the birth of both new urbanism and smart growth theory. Similarly, the
understanding and encouraging of walking activities in cities and public
spaces complements the goals of urban theories regarding the image of
the city (Lynch, 1960) and the quality of public space (Whyte, 1980).
Therefore, monitoring walking activities with indicators such as pe-
destrian volume can provide sustained support for researchers and
planners to promote walking behavior.

2.2. Previous studies of the relationship between the built environment and
walking

Promoting walking has become a public health priority worldwide
(WHO, 2010). Researchers have increasingly recognized that inter-
ventions to promote walking must address not only personal attitudes
and preferences through education but also structural factors of the
built environment (Brownson et al., 2008; Yin & Wang, 2016). Some
reviews have offered firm evidence that the characteristics of the built
environment can promote or hinder walking behavior (Heath et al.,
2006; McCormack & Shiell, 2011; Owen, Humpel, Leslie, Bauman, &
Sallis, 2004; Saelens & Handy, 2008).

The features of the built environment that affect walking behavior
can be measured at both the macro-scale (neighborhood level, e.g., land
use mix, street connectivity) and the micro-scale (street level, e.g.,
sidewalk and road characteristics). Most studies have focused on macro-
scale features because built environment features are most easily cap-
tured and measured using geographic information systems (Chudyk,
Winters, Gorman, McKay, & Ashe, 2014). The macro-scale built en-
vironment has been measured and characterized by using the D vari-
ables of density, diversity, design, destination accessibility, and dis-
tance to transit (Boer, Zheng, Overton, Ridgeway, & Cohen, 2007;
Ewing & Cervero, 2010; Frank et al., 2006; Frank, Saelens, Powell, &
Chapman, 2007; Marshall & Garrick, 2010; Smith et al., 2008; Xie, An,
Zheng, & Li, 2018). In essence, urban residents tend to walk more in
compact neighborhoods with mixed land use, in areas with finer-
grained street networks, in areas that are closer to transit stations, and
in places with more pedestrian destinations (Ewing & Handy, 2009).
Furthermore, micro-scale built environment characteristics also affect
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walking behavior (Yin, 2017). Previous empirical studies have tenta-
tively suggested that aesthetics, safety from crime and traffic all affect
the frequency and duration of walking (Duncan, Spence, & Mummery,
2005; Owen et al., 2004; Parra et al., 2011; Shigematsu et al., 2009;
Wallmann, Froboese, & Bucksch, 2011).

2.3. Street View imagery in walkability studies

Advances in the fields of big data and computational science have
stimulated research on the associations between built environments and
walking. These advances have provided new methods for collecting
environmental and behavioral data, especially at the micro-scale street
level (Rzotkiewicz et al., 2018).

Some researchers have used SVIs to develop built environment as-
sessment tools, such as walkability assessment tools (Cain et al., 2014;
Emery, Crump, & Bors, 2003; Hoehner, Ivy, Ramirez, Handy, &
Brownson, 2007; Troped et al., 2006) or the Pedestrian Level of Service
tool (Asadi-Shekari, Moeinaddini, & Zaly Shah, 2013; Jaskiewicz, 2000;
Talavera-Garcia & Soria-Lara, 2015). Several recent studies have de-
veloped new Internet-based audit tools that use Google SVIs to assess
built environment features. For example, Google SVIs were used to
identify target areas for improving pedestrian access (Griew et al.,
2013), to assess environmental features related to dietary and physical
activity in neighborhoods (Bethlehem et al., 2014), to assess the phy-
sical environment along cycling routes to schools (Vanwolleghem, Van
Dyck, Ducheyne, De Bourdeaudhuij, & Cardon, 2014), and to conduct
virtual audits of neighborhood environments (Bader et al., 2015).
Google SVIs have also proved useful for investigating the relationships
between crimes and the physical features of urban residential en-
vironments (He, Páez, & Liu, 2017), and for addressing the challenges
faced by people with disabilities (Ahmetovic, Manduchi, Coughlan, &
Mascetti, 2017). In addition, some studies have used Google SVIs to
assess specific aspects of built environment features such as green space
(Li et al., 2015), open skies (Yin & Wang, 2016), safety (He et al., 2017;
Naik, Philipoom, Raskar, & Hidalgo, 2014), and traffic signs (Campbell,
Both, & Sun, 2019). Several studies have used these desk-based audits
to evaluate the effects of built environments on walking (Clarke et al.,
2010; Griew et al., 2013; Rundle et al., 2011) and cycling (Lu, Yang,
Sun, & Gou, 2019; Vanwolleghem et al., 2014).

The majority of recent studies have demonstrated that virtual audits
undertaken with SVIs have acceptable levels of concurrent validity and
inter-rater reliability, and that these audits eliminate the geographic
constraints imposed by travel costs and field logistics (Badland et al.,
2010; Clarke et al., 2010; Curtis, Curtis, Mapes, Szell, & Cinderich,
2013; Odgers, Caspi, Bates, Sampson, & Moffitt, 2012; Rundle et al.,
2011; Wilson et al., 2012). For example, audits based on Google SVIs
can save time and have acceptable agreement levels with in-person
audits (Badland et al., 2010; Rundle et al., 2011).

In general, data on walking activity are more difficult to collect than
data on the built environment, especially at the large geographic scale.
In the past, data on walking behaviors were often collected in two
conventional ways: responses to surveys and field audits (Brownson,
Hoehner, Day, Forsyth, & Sallis, 2009). Both methods are time-con-
suming, labor-intensive, and inefficient.

In recent years, image-based pedestrian detection techniques have
undergone impressive transformations. Video-based and image-based
human detection systems have found a wide range of applications in
robotics and intelligent transportation (Prioletti et al., 2013). The
classic pedestrian detection methods include the Support Vector Ma-
chine (SVM) and the Decision Tree. These methods classify environ-
mental features by assessing relationships between Histogram of Or-
iented Gradient (HOG) readings at different scales in the image pyramid
(Benenson, Omran, Hosang, & Schiele, 2015; Dollár, Appel, Belongie, &
Perona, 2014).

Researchers in the public health and urban planning fields have
made some initial applications of manual or automated pedestrian

detection systems based on Google SVIs. For example, Ewing and
Clemente (2013) used desk-based audits of Google SVIs to count pe-
destrians as one aspect of their street-level urban quality assessments.
Similarly, Goel and colleagues used manual methods to audit seven
types of street users and then applied the data from their audit to
predict city-level travel patterns (Goel et al., 2018). Yin and colleagues
developed an improved method for automatically extracting pedestrian
count data with Google SVIs and machine learning techniques (Yin
et al., 2015). However, the automated methods have not been rigor-
ously tested for validity.

2.4. Current gaps and our study

Pedestrian volume is an important indicator that can reflect physical
activity levels, walkability, and urban vitality. Therefore, monitoring
pedestrian volume is important to create healthy neighborhoods and
pedestrian-oriented cities. Pedestrian volume data have been tradi-
tionally collected through field counting or self-reported surveys, which
have significant limitations. For instance, self-reported data on walking
may introduce recall bias and social desirability issues (Adams et al.,
2005; Prince et al., 2008). In addition, the data reported are often not
linked with specific geographic locations (Saelens & Handy, 2008).
Measuring pedestrian volume by field audits can also be challenging;
the time required for observation, the number of observers and the fi-
nancial costs are often substantial (S. Lee & Talen, 2014). Both the field
counting and self-reported methods are unfeasible for assessments of
large, spatially dispersed study areas (Purciel et al., 2009; Rundle et al.,
2011).

Measuring pedestrian volume from SVIs with machine learning
techniques can overcome these problems because this approach offers
large geographic reach, consistent image acquisition, and inherent
geographic information (Bader et al., 2015). This promising method
may stimulate more extensive walkability studies. As mentioned above,
several studies have explored the possibility of using Google SVIs with
machine learning techniques for automated pedestrian detection (Yin
et al., 2015). However, the accuracy of this new method has not yet
been rigorously tested. It is unclear whether SVI characteristics (such as
service providers, collecting times, and levels of image quality) or street
segment features may affect the level of accuracy. In this study, we
conducted a large-scale validation test, by comparing pedestrian vo-
lumes extracted from SVIs with those from field observation for 701
street segments. We hypothesized that different SVIs parameters and
street features could affect the levels of agreement with the field ob-
servation data.

3. Method

3.1. Study area

This study was conducted in Tianjin, China, one of four munici-
palities directly administered by the central government. It is a large
city in northern China, with a population of 15.5 million in 2015 (Liu,
Gao, & Wang, 2018). Tianjin remains a monocentric city, and this study
focused on several parts of the downtown area (Fig. 1). The “street
segment” was used as the unit of analysis, which was defined as the
portion of street between two adjacent street intersections. The lengths
of these street segments were relatively short, ranging from 30 to 400 m
(M = 138 m, SD = 72 m), and a total of 701 street segments were
selected for this study. The sampling streets were located in several
established neighborhoods within city center, featuring iron-grid street
pattern, high walkable urban environment, and mainly business and
residential land uses. The neighborhoods were selected due to their
high pedestrian activities.
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3.2. Pedestrian volume data from field observation

To test the accuracy of automated pedestrian counts from SVIs, field
observation counts of pedestrian volume were collected in March 2015,
by a group of university students from a major public university in
Tianjin. For each street segment, the students recorded a 20-min video,
which represented four recordings of five minutes each, taken at dif-
ferent times during one day, at a fixed location, covering both sides of
the street segment. Then, the number of pedestrians passing an ima-
ginary fixed-location were counted in the videos. The weather on the
days of the recordings was mild and conducive to walking activities.

3.3. Assessing pedestrian volumes from SVIs

The overall workflow of extracting pedestrian volumes from SVIs
contained three steps (Fig. 2): retrieval of SVIs, pedestrian detection
with LDCF algorithm, and data aggregation. The data on the SVIs were
retrieved from two service providers of SVIs in China: Tencent and
Baidu Maps. As Google SVIs are unavailable in China, this provider was
excluded. A Python web crawler technique was developed to download
SVIs via API.

The process of retrieving SVIs images were described below (Fig. 3).
SVIs sampling points were generated along the streets at intervals of
20 m in the ArcGIS mapping platform, and the direction of each street
was calculated. The use of 20-m sampling intervals avoids the problems
of excessive or incomplete coverage along the street. For each sampling
point, SVIs were retrieved with the following parameters. For Baidu
Street View panoramas, the horizontal directions of 0o, 90o, 180o, and
270o (as heading parameters in the Baidu API) represented the front,
right, back, and left directions, based on the camera car's direction of

movement, parallel to the corresponding streets. Two images were
obtained for the left and right directions of each panorama. Hence,
those two images were perpendicular to the street centerline. The
vertical direction (pitch parameter in the Baidu API) was set at 0o,
which meant that the images were retrieved at the horizontal view
angle. The field of view (FOV parameter in the Baidu API) was set at
90o. The maximum image pixel-size was set at 1024*1024 pixels, and
the highest image quality selected was 100 out of 100 in API.

For the Tencent Street View panoramas, a total of 24 image tiles
(512*512 pixels for each tile) for each sampling point were directly
downloaded from the Tencent API, and the 24 image tiles were stitched
together to create a panoramic image with three tiles (1536 pixels) in
the vertical direction, and eight tiles (4096 pixels) in the horizontal
direction. We first constructed a panoramic image and then cut out two
images perpendicular to the street with a vertical extent from 284 to
684 out of 1536 pixels, and a horizontal extent of two tiles (1024 pixels)
from each image.

To improve the accuracy of the pedestrian extraction, the Baidu and
Tencent images were cropped at their vertical axes to a size of
1024*400 pixels. The cropped images usually covered the sidewalk
range of the street. The Baidu images were cropped from 312 to 712
pixels at the vertical axis, using the retrieved images at maximum pixel-
size. The Tencent images were directly cropped at 1024*400 pixels
from the stitched panoramic images. The cropped images excluded
redundant visual information at the tops and bottoms of images con-
taining no pedestrians. In a pilot test, we compared manual counts from
50 randomly selected images and found that cropped images out-
performed the original images in automated pedestrian extraction
(Pearson r = 0.75 vs. r = 0.69).

Furthermore, in another pilot test with 50 randomly selected Baidu

Fig. 1. Study areas and streets. The pedestrian volume of the 701 street segments in Tianjin, China, were obtained by field observation.
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images, we found that larger-size images (1024*1024 pixels for each
image; 0.55 MB file size for each image, averaged by 1000 images)
outperformed medium-sized images (800*800 pixels; 0.37 MB file size)
or small-sized images (512*512 pixels; 0.16 MB file size) in terms of
accuracy in automated pedestrian extraction. We determined image
performance by comparing the automated counts with the manual
counts from those images (Pearson r = 0.75, 0.66, and 0.19 for the
large-, medium-, and small-size images, respectively). Hence, all of the

Baidu SVIs were retrieved at the maximum image size. The quality of
the Baidu images ranged from 0 to 100 in the API. Images with high
quality (100 in quality, 0.55 MB file size) outperformed low-quality
images (60 in quality, 0.49 MB file size) in our third pilot test (Pearson
r = 0.75 vs. r = 0.71). The results demonstrated that both the pixel-
size and the quality parameter could influence the resolution of Baidu
SVIs. The pixel sizes of Tencent images were equivalent to those of the
retrieved Baidu images and covered roughly the same areas. However,

Fig. 2. The overall workflow of this study.

Fig. 3. Retrieving and transforming Tencent or Baidu SVIs.
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the quality of the Tencent images (Pearson r = 0.80, 0.61 MB file size)
was better than the Baidu images.

Baidu Street View API provides a feature that enabled us to retrieve
not only the most recent images but also previously collected images.
Hence, we retrieved Baidu SVIs from 2013, 2015, 2016, and 2017, and
we retrieved Tencent images from 2014.

Images facing both sides of the streets as retrieved from the Baidu
and Tencent panoramas were used for automated pedestrian detection,
with the application of an advanced machine learning technique in-
volving the Locally Decorrelated Channel Features (LDCF) algorithm
(Fig. 4). The LDCF algorithm is capable of counting pedestrians from
any images without involving the image segmentation process. In the
pedestrian detection field, decision trees with orthogonal splits have
remained popular. Orthogonal splits are more efficient and have lower
computational costs during training and detection than the oblique
splits, although oblique splits may have considerable advantages when
processing high-dimensional data with heavily correlated features
(Nam, Dollár, & Han, 2014). Based on a scheme proposed by Hariharan,
Malik, and Ramanan (2012) for estimating covariances between His-
togram of Oriented Gradients (HOG) features using Linear Discriminant
Analysis (LDA) for fast training, Nam and colleagues proposed LDCF
algorithm which can introduce an efficient feature transformation that
removes correlations in images of local neighborhoods (Nam et al.,
2014). In this way, Nam's research finds that orthogonal trees with
locally decorrelated HOG features are more applicable to pedestrian
detection than oblique trees (e.g., ACF detector with oblique splits).

In addition, the LDCF algorithm was trained with Caltech pedestrian
dataset (Dollar, Wojek, Schiele, & Perona, 2009). The dataset was col-
lected by a camera in a car driving through regular traffic in an urban
environment. The images usually have low resolution and frequently
occluded people which are similar with Baidu and Tencent SVIs. In the
Caltech dataset, approximately 250,000 images with a total of 350,000
bounding boxes and 2300 unique pedestrians were annotated. Roughly
half of the images were used in LDCF training, while the remaining
were used in test. As shown in Nam's research, the trained LDCF algo-
rithm achieved a performance with a higher successful rate about 80%
to detect pedestrian compared with previous algorithms (Nam et al.,
2014). A pilot test was conducted with 50 Baidu SVIs and 50 Tencent
SVIs. The number of pedestrians detected by LDCF algorithm strongly
correlates with manual pedestrian counts in these images (Pearson
r = 0.75, p < .01 for Baidu SVIs, and r = 0.80, p < .01 for Tencent

SVIs).
Finally, we aggregated the count data from sampling points at the

street level. The count data from the 20-min videos were used to
measure pedestrian volumes, i.e., pedestrian counts over a fixed dura-
tion of time. However, each SVI is only able to capture pedestrians at a
certain point in time. A street segment can have multiple SVI sampling
points and hence multiple SVIs. These multiple SVIs represent pedes-
trian activities at multiple points of time. Therefore, the average
number of pedestrians per image (rather than the total number of pe-
destrians for all sampling points) should be used to represent the au-
tomated pedestrian volume of each street segment in this study. For
instance, there are two street segments (A & B) with same pedestrian
volume, but with different length (20m and 200m respectively).
Segment A has one SVI sampling point, while Segment B has ten. Let’s
assume the number of pedestrians in each SVI is similar, because these
two street segments have same pedestrian volume. The pedestrian vo-
lume for Segment B will be tenfold inflated, if it is calculated as the total
number of pedestrians in all SVIs.

Pedestrian volume data were separately calculated for Baidu images
from 2013, 2015, 2016, 2017, and Tencent images from 2014. In ad-
dition, we calculated the multi-year or multi-source averages with two
additional combinations: collection times of SVIs close to the field au-
dits (Baidu from 2015 and Tencent from 2014), and all data sources of
SVIs (Baidu for 2013, 2015, 2016, and 2017, and Tencent for 2014). It
should also be noted that the proportions of Street View coverage for
the 701 street segments varied for different years and different sources,
ranging from 73.6% to 99.7% (Table 1).

3.4. Statistics

Descriptive statistics were compiled to describe the pedestrian vo-
lume data collected from both the field audits and the SVIs. Those
statistics included minimums, maximums, means, standard deviations
(SDs), the number of street segments, street segment coverage, and data
collection years.

Cronbach's alpha was used to test the data reliability and compare
the pedestrian volumes collected by field audits to the volumes ex-
tracted from various SVIs (Ewing & Clemente, 2013; Yin et al., 2015).
Cronbach's alpha is a widely accepted reliability indicator used to
measure the degree to which two variables hold the same construct. As
a rule of thumb in social science studies, an alpha value ≥0.70 is

Fig. 4. Illustrating the process of pedestrian detection with the LDCF algorithm.
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regarded as acceptable reliability, and an alpha value ≥0.80 is re-
garded as good.

To identify which street segment characteristics may affect the re-
liability of SVIs pedestrian detection, we further classified the street
segments according to three factors: segment length, pedestrian vo-
lumes (as assessed by field audit), and the walkable catchment. The
walkable catchment (Duany, Plater-Zyberk, & Speck, 2000) of each
segment was calculated as the total length of all streets within a 500-m
street network buffer, and it is typically used to compare levels of
walkability and street connectivity for different locations Fig. 5. Each
factor was split into quartiles, and separate Cronbach's alpha tests were
conducted for each subset of street segments.

4. Results

The descriptive statistics are presented in Table 1. Most of the
sampling street segments were covered by Tencent service in 2014.
However, the coverage of Baidu Street View was more inconsistent in
different years. A total of 4507 sampling points from 701 streets were
used in this study. As a result of SVIs availability, 4840, 3440, 4134,
and 7376 images were collected from Baidu 2013, 2015, 2016, 2017
datasets respectively. A total of 9012 images were collected from
Tencent 2014 dataset. Automated pedestrian counts illustrated dif-
ferent statistical results from different years or sources. The average
number of detected pedestrians in each image within each segment
ranged from 1.30 to 2.58 in all SVIs datasets (Table 1). The proportion
of street segments covered in SVIs also vary by SVIs providers and
collection years.

It is worth noting that the automated pedestrian count method is
more efficient than field observation. The whole process only took

about 1.5 s per image to automatically obtain pedestrian count (the
time may vary by computer configurations), including the tasks of
image retrieving, image processing, and pedestrian detecting. As a
comparison, field observation usually took two hours per street seg-
ment, including the tasks of transportation, video recording, manual
pedestrian counting with video.

Table 2 illustrates the level of agreement between the automated
pedestrian detection results and the field audit results. As an individual
data source, Tencent SVIs in 2014 achieved good agreement (Cronba-
ch's alpha = 0.80). Baidu SVIs in 2015 had questionable agreement,
and Baidu SVIs in 2013, 2016, and 2017 had unacceptable agreement.
For combinations of multiple data sources, the averaged results of
Baidu 2015 and Tencent 2014 had a good agreement (Cronbach's
alpha = 0.81), and the averaged results of all data sources (B3567T4)
had an acceptable agreement (Cronbach's alpha = 0.71).

Table 1
Pedestrian volumes derived from different data sources.

Street view Min. ped. volume Max.ped. volume Mean ped. volume SD. ped. volume Num. of street segments Coverage (%) Collection Year

Field audit 2 4356 432.32 508.08 701 100% 2015
Baidu_13 0 10 1.70 1.21 580 82.7% 2013
Baidu_15 0 12.10 1.30 1.29 516 73.6% 2015
Baidu_16 0 10.75 1.56 1.50 557 79.5% 2016
Baidu_17 0 12 2.58 1.98 610 87.0% 2017
Tencent_14 0 13.5 2.52 1.68 699 99.7% 2014
B5T4 0 9.90 2.09 1.44 699 99.7% Multiple
B3567T4 0.20 9.14 2.07 1.24 699 99.7% Multiple

B5T4 is the combination of Baidu 2015 and Tencent 2014 image data; B3467T4 is the combination of all SVIs data sources, including Baidu 2013, 2015, 2016, 2017,
and Tencent 2014.

Fig. 5. High and low walkable streets catchment, as defined by the total length of streets within a 500-m street network buffer, i.e., the total length of all streets that
can be reached by walking 500 m from one street segment.

Table 2
Levels of agreement between automated pedestrian detection from different
Street View (SV) sources and the results of field audits.

SV source Cronbach's alpha (vs. field audit) Level of agreement

Tencent_14 0.80 Good
Baidu_13 0.46 Unacceptable
Baidu_15 0.60 Questionable
Baidu_16 0.35 Unacceptable
Baidu_17 0.47 Unacceptable
B5T4 0.81 Good
B3567T4 0.71 Acceptable

B5T4 is the combination of Baidu 2015 and Tencent 2014 data; B3467T4 is the
combination of all SVIs data sources, including Baidu 2013, 2015, 2016, 2017,
and Tencent 2014.
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Table 3 illustrates the agreement test for street segments grouped by
three factors: segment length, pedestrian volumes (as measured by field
audits), and walkable catchment. The Cronbach's alphas of each quar-
tile demonstrated several interesting patterns. Segment length was not a
significant factor affecting the agreement test, and pedestrian volume
affected the level of agreement. Those segments with the highest vo-
lumes (Quartile 4) had significantly higher Cronbach's alphas than the
other quartile groups for all three SVIs data sources. Similarly, segments
with the highest street connectivity (Quartile 4) had significantly higher
Cronbach's alphas than the other quartile groups.

5. Discussion

Previous studies have verified the feasibility of using SVIs to con-
duct environmental audits, such as audits of general neighborhood
environments (Charreire et al., 2014; Rundle et al., 2011), street
greenery (Lu, 2018), and open skies (Yin & Wang, 2016). However,
most of these studies have focused on static environment features, ra-
ther than dynamic information such as pedestrian volumes, which
constantly fluctuate over time and space. In this study, we sampled 701
street segments in Tianjin and compared the automated detection re-
sults with pedestrian volumes collected by field observation. The results
demonstrated that using Tencent and Baidu SVIs with machine learning
techniques is a promising method for estimating pedestrian volumes on
a large geographic scale. We concluded that with appropriate proces-
sing and parameters, automated pedestrian volume detection could
achieve reasonable levels of accuracy. More specifically, we found that
variable factors of SVIs and street segments may influence the accuracy
of automated assessment of pedestrian volume.

5.1. Image quality and processing

Image quality is important in the process of automated pedestrian
detection. The resolution of the images should be selected carefully to
avoid omissions and misrecognition in the process of machine-based
pedestrian recognition. In this study, we found that both image size (in
pixels) and image quality (1–100 scale) influenced the accuracy of
counts from Baidu SVIs. As our pilot test with Baidu SVIs demonstrated,
large-sized images (1024*1024 pixels) had higher levels of accuracy
than medium-sized (800*800 pixels) or small-sized images (512*512
pixels). Similarly, Baidu images with high image quality (100 out of
100) outperformed those with low image quality (60 out of 100) in the
pilot accuracy tests. The API parameters provided by Tencent differed
from those provided by Baidu, and the Tencent panoramic images were
composed of 24 image tiles. However, Tencent outperformed Baidu in
the pilot accuracy test, which may be attributed to its relatively large

file size. Hence, Tencent is more suitable for automated pedestrian
detection than Baidu, when other conditions are equal. In addition, SVIs
can be cropped to remove the tops and bottoms of those images, be-
cause those areas contain no pedestrians. In summary, appropriate
image parameters and processing should be tested and implemented to
increase the accuracy of automated pedestrian detection.

5.2. Image collection time

Matching the collection times of SVIs with those of field observa-
tions may also affect the accuracy of automated pedestrian detection. In
our study, pedestrian volume data were collected from field observa-
tions conducted in 2015. The Baidu images from 2015 demonstrated
questionable agreement with the field observations, but the Baidu
images from other years (2013, 2016, and 2017) had unacceptable
agreement. Tencent images from 2014 had the highest levels of
agreement of any single data source, and the combination of Baidu
images from 2015 and Tencent images from 2014 also achieved ac-
ceptable agreement, which indirectly confirmed our assumption. In
contrast, images collected at times further away from the targeted
period demonstrated reduced accuracy. The fluctuations of pedestrian
volumes across different SVI collection times might be explained by the
rapid urban development of China in recent years. The walking-influ-
encing factors, such as population density, commercial activity, and
major transport modes have recently undergone major changes in
Tianjin.

5.3. Street segment characteristics

Regarding street segment characteristics, street segments having
higher pedestrian volumes, better walkability, and greater street con-
nectivity (as measured by walkable catchment) had greater accuracy. It
is worth noting that pedestrian volume and street connectivity are
highly correlated (Hajrasouliha & Yin, 2015; Hillier & Iida, 2005;
Lerman, Rofè, & Omer, 2014; Ozbil, Peponis, & Stone, 2011). Hence,
street connectivity may affect accuracy via the mediation effect of pe-
destrian volume. Furthermore, the street segment length does not affect
the accuracy of automated pedestrian detection. We tentatively suggest
that automated pedestrian detection may work well in streets with
higher pedestrian volumes, and researchers should be cautious in using
this method in streets with low pedestrian volumes.

The findings of this study can advance multidisciplinary research
that aims to promote walking behaviors and create healthy cities.
Researchers can use SVIs and machine learning techniques to assess
pedestrian volumes at any location having Street View coverage. Hence,
the automated pedestrian detection method can help urban planners
and policymakers to identify areas with low pedestrian activity, and
generate tailored urban design strategies to improve urban environ-
ment. Researchers who focus on the associations between the built
environment and walking can also use this method to identify critical
built environment characteristics that may promote walking behaviors
on a citywide or even nationwide scale.

We also found that the parameters of SVIs are important in machine
learning. Image size and quality should be increased to detect fine-
grained street elements. In our study, Tencent SVIs had higher quality
and better accuracy than Baidu SVIs. Furthermore, our findings suggest
that Tencent and Baidu should provide more API parameters, such as
image collection times, weather conditions, and temperatures, as these
factors may also affect pedestrian activities.

Several limitations of this study should be noted and hopefully
overcome in the future. First, we used a fixed distance of 20 m between
sampling points along each street. The street front coverage varied by
street width. For example, there could be gaps in the SVIs for narrow
streets and overlaps for wide streets. Hence, in future studies the dis-
tance between sampling points may be adjusted by street width.
Second, some cities or some parts of a city are not currently covered by

Table 3
Level of agreement for street segments grouped by three factors: segment
length, pedestrian volume, and walkable catchment.

Variables used to group
street segments

Quartiles Cronbach's alpha (SV count vs. Field
count)

T4 B5T4 B3567T4

Segment length Q1-short 0.79 0.79 0.72
Q2 0.79 0.85 0.77
Q3 0.86 0.87 0.70
Q4-long 0.70 0.70 0.61

Pedestrian volume Q1-low 0.46 0.41 0.47
Q2 0.46 0.48 0.57
Q3 0.56 0.58 0.58
Q4-high 0.80 0.86 0.72

Walkable catchment Q1-low 0.60 0.65 0.65
Q2 0.68 0.67 0.70
Q3 0.69 0.67 0.62
Q4-high 0.86 0.87 0.74
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any Street View service. The proposed method cannot be applied to
those areas. Third, automated pedestrian detection has unacceptably
low accuracy in locations with low pedestrian volumes. Researchers
should be cautious in interpreting data from these areas. Fourth, pe-
destrians in SVIs obscured by other objects, e.g., vehicles or trees,
cannot be detected, hence pedestrian volumes were underestimated.
Last, some factors of SVIs were not considered, e.g., weather, daylight,
month, or season of the image collection time. These factors should be
considered in subsequent studies.

6. Conclusion

The traditional method of assessing pedestrian volume with field
observations is often time-consuming, labor-intensive, and with limited
study areas. In this study, we have investigated the accuracy of an
automated method for assessing pedestrian volume. This method uses
Tencent and Baidu SVIs with machine learning techniques, to overcome
the limitations of field observations. Our results demonstrated that
overall, the new method provided acceptable or good levels of agree-
ment with field observation data. It is worth noting both SVI and street
segment characteristics can affect the accuracy. SV images of high
quality, large size, and times of collection close to the targeted periods
proved better able to produce accurate counts. The proposed automated
method also worked better in areas with high pedestrian volume and
high street connectivity. Future researchers should be cautious in using
this method for areas with low pedestrian volumes.
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